Lecture 9
2023/2024
Microwave Devices and Circuits
for Radiocommunications

2023/2024

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 16-18, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2023/2024

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, Il.13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 20.02.2024)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Credits: 4
Enroilment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:

Evaluation

Type: Examen
A: 50\%, (Test/Colloquium)
B: 25%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
Grades
Aggregate Results
Attendance
Course
Laboratory
Lists
Bonus-uri acumulate (final).
Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, 8 m)
MDCR Lecture 2 (pdf, $3.67 \mathrm{MB}, \mathrm{en}, \neq$)
MDCR Lecture 3 (pdf, $4.76 \mathrm{MB}, \mathrm{en}$, \#\#)
MDCR Lecture 4 (pdf, 5.58 MB , en,

Online Exams

In order to participate at online exams you must get ready following

Site

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam > Week4-Week6
- used at lectures/laboratory

Online - Registration no.

- access to online exams requires the password received by email

The password is communicated during the lectures. It is necessary ${ }^{1}$

[6fbe95

Write the code
below

5dd64f9

Send

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use
:
Subject
Important message from RF-OPTO
$\infty \quad$ Correspondents

Validation of IviUCR exam trom UZ/05/2020

From Me rdamian@etti.tuiasi.ro
S Aect Important message from RF-OPTO

Cc Me rdamian@etti.tuiasi.ro *

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" lasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line (pdf, 2.65 yB, ro, II) Simulare Examen (video) (mp4, 65 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for co

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Simam	dis					bemer																
．		${ }_{\text {che }}^{\text {a }}$						15588	2	15.35	18091	3329	115.19	79.9	${ }^{37}$							
		${ }_{\text {cose }}$			$\frac{85 .}{\text { a }}$		．97	1335	3.45	3379	5556	2212	1	。	。		，	。				
					$\frac{.}{\text { asid．}}$					。	。	\bigcirc		－	－	－		。				
							so	50	50	50	50	50	50									
		$\frac{58}{550}$	（emem		$\frac{85 .}{\frac{85}{564}}$	$\frac{85}{\frac{45}{5} 5}$	18 18022	150.5	1728	1375	92.12	12.107	124．48	9.36	36．							
			既			$\frac{85}{\frac{85}{565} \text { ．}}$	1222	80，	2092	120.85	135.1	1837	107.6									
											2271	180.17										
	$\frac{8.800}{5080}$						15084	1225	30.9	${ }^{323}$	5436	1983	22.85	6.1								
	$\frac{855.55}{2050}$					$\frac{\frac{85}{555}}{\frac{5}{355}}$						1237		269705	${ }^{36.16}$							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submission
TEM transmission lines

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j \cdot \beta \cdot z}-\Gamma \cdot e^{j \cdot \beta \cdot z}\right)
$$

- time-average Power flow along the line
$P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \underbrace{\operatorname{Re}\left\{1-\left.\Gamma^{*}\right|^{*} \cdot\left(1-|\Gamma|^{2}\right)\right.}_{\left(z-z^{*}\right)=\operatorname{Im}} \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}-|\Gamma|^{2}\}$
- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

General theory
Microwave Network Analysis

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance Matching
The Smith Chart

The Smith Chart

The Smith Chart

Impedance matching
Impedance Matching with lumped elements (L Networks)

The Smith Chart, reflection

coefficient, impedance matching

The Smith Chart, series reactance

The Smith Chart, series

transmission line, Z_{0}

The Smith Chart, shunt susceptance

Matching, series reactance

$$
\begin{aligned}
& z_{L}=r_{L}+j \cdot x_{L} \\
& z_{\text {in }}=r_{L}+j \cdot\left(x_{L}+x_{1}\right) \\
& r_{\text {in }}=r_{L}
\end{aligned}
$$

- Match can be obtained if and only if $r_{L}=1$
- we compensate the reactive part of the load

$$
j \cdot x_{1}=-j \cdot x_{L}
$$

Matching, shunt susceptance

- Match can be obtained if and only if $g_{L}=1$
- we compensate the reactive part of the load $j \cdot b_{1}=-j \cdot b_{L}$

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Analytical solutions
Exam / Project

Case 1, Shunt Stub

- Shunt Stub

Matching, series line + shunt

 susceptance

Analytical solution, usage

$\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|$
$\Gamma_{S}=0.593 \angle 46.85^{\circ}$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$$
\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ} \quad \cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \text { " }+ \text { " solution } \downarrow \\
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S}=\frac{\Delta-2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.472 \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ} \quad
\end{aligned}
$$

- "_" solution \downarrow

$$
\left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ}
$$

$$
\operatorname{Im} y_{S}=\frac{\partial+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ}
$$

Analytical solution, usage

$$
(\varphi+2 \theta)=\left\{\begin{array}{l}
+126.35^{\circ} \\
-126.35^{\circ}
\end{array} \theta=\left\{\begin{array}{l}
39.7^{\circ} \\
93.4^{\circ}
\end{array} \operatorname{Im}\left[y_{S}(\theta)\right]=\left\{\begin{array}{l}
-1.472 \\
+1.472
\end{array} \theta_{s p}=\left\{\begin{array}{l}
-55.8^{\circ}+180^{\circ}=124.2^{\circ} \\
+55.8^{\circ}
\end{array}\right.\right.\right.\right.
$$

We choose one of the two possible solutions

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$
\begin{array}{ll}
l_{1}=\frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda=0.110 \cdot \lambda & l_{1}=\frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda=0.259 \cdot \lambda \\
l_{2}=\frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda=0.345 \cdot \lambda & l_{2}=\frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda=0.155 \cdot \lambda
\end{array}
$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Matching, series line + series

 reactance

Analytical solution, usage

$\cos (\varphi+2 \theta)=\left|\Gamma_{S}\right|$
$\Gamma_{S}=0.555 \angle-29.92^{\circ}$

$$
\theta_{s s}=\beta \cdot l=\cot ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\left|\Gamma_{S}\right|=0.555 ; \quad \varphi=-29.92^{\circ} \quad \cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
" "+" solution \downarrow

$$
\begin{aligned}
& \text { " }+ \text { " solution } \downarrow \\
& \left(-29.92^{\circ}+2 \theta\right)=+56.28^{\circ} \quad \theta=43.1^{\circ} \quad \operatorname{Im} z_{S}=\frac{\searrow+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.335 \\
& \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=-36.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s s}=143.2^{\circ} \quad
\end{aligned}
$$

$$
\theta=-13.2^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=166.8^{\circ}
$$

$$
\operatorname{Im} z_{S}=\frac{\Delta-2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.335
$$

$$
\theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{s}\right)=36.8^{\circ}
$$

Analytical solution, usage

$$
(\varphi+2 \theta)=\left\{\begin{array}{l}
+56.28^{\circ} \\
-56.28^{\circ}
\end{array} \theta=\left\{\begin{array}{l}
43.1^{\circ} \\
166.8^{\circ}
\end{array} \text { Im }\left[z_{s}(\theta)\right]=\left\{\begin{array}{l}
+1.335 \\
-1.335
\end{array} \theta_{s s}=\left\{\begin{array}{l}
-36.8^{\circ}+180^{\circ}=143.2^{\circ} \\
+36.8^{\circ}
\end{array}\right.\right.\right.\right.
$$

We choose one of the two possible solutions

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$
\begin{aligned}
& l_{1}=\frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda=0.120 \cdot \lambda \\
& l_{2}=\frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda=0.398 \cdot \lambda
\end{aligned}
$$

$$
l_{1}=\frac{166.8^{\circ}}{360^{\circ}} \cdot \lambda=0.463 \cdot \lambda
$$

$$
l_{2}=\frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda=0.102 \cdot \lambda
$$

Term Term3

Term3
Num=1
$\mathrm{Z}=50 \mathrm{Ohm}$
 $\mathrm{E}=167$

Stub, observations

- adding or subtracting $180^{\circ}(\lambda / 2)$ doesn't change the result (full rotation around the Smith Chart)

$$
E=\beta \cdot l=\pi=180^{\circ} \quad l=k \cdot \frac{\lambda}{2}, \forall k \in \mathbf{N}
$$

- if the lines/stubs result with negative "length"/ "electrical length" we add $\lambda / 2 / 180^{\circ}$ to obtain physically realizable lines
- adding or subtracting $90^{\circ}(\lambda / 4)$ change the stub impedance:

$$
Z_{i n, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l \quad \Leftrightarrow \quad Z_{i n, g}=-j \cdot Z_{0} \cdot \cot \beta \cdot l
$$

- for the stub we can add or subtract $90^{\circ}(\lambda / 4)$ while in the same time changing open-circuit \Leftrightarrow short-circuit

Microwave Amplifiers

Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50 Ω)
- Datasheets: S parameters for specific bias conditions

S2P - Touchstone

- Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
! VDS = 3.5 V ID = 15 mA
# GHz S MA R 50
!f S11 S21 S12 S22
!GHz MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900 -15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600-30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100-45.0
4.000 0.8200-89.0 2.230 86.0 0.0850 23.0 0.5600-62.0
5.000 0.7400-115.0 2.190 61.0 0.0990 7.0 0.4900-80.0
6.000 0.6500-142.0 2.110 36.0 0.1070 -10.0 0.4100 -98.0
!
! f Fmin Gammaopt rn/50
!GHz dB MAG ANG -
2.000 1.00 0.72 27 0.84
4.000}1.400.64\quad61\quad0.5
```


Amplifier as two-port

Continue

Power / Matching

- Two ports in which matching influences the power transfer

Signal power

$$
\begin{aligned}
& \Gamma_{i n}=\frac{V_{1}^{-}}{V_{1}^{+}}=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} \\
& V_{1}=\frac{V_{S} \cdot Z_{\text {in }}}{Z_{S}+Z_{\text {in }}}=V_{1}^{+}+V_{1}^{-}=V_{1}^{+} \cdot\left(1+\Gamma_{\text {in }}\right) \\
& V_{1}^{+}=\frac{V_{S}}{2} \frac{\left(1-\Gamma_{S}\right)}{\left(1-\Gamma_{S} \cdot \Gamma_{i n}\right)} \\
& \text { - L3 } \quad P_{i n}=\frac{1}{2 \cdot Z_{0}} \cdot\left|V_{1}^{+}\right|^{2} \cdot\left(1-\left|\Gamma_{i n}\right|^{2}\right) \quad P_{L}=\frac{1}{2 \cdot Z_{0}} \cdot\left|V_{2}^{-}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
& P_{i n}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}\left(1-\left|\Gamma_{i n}\right|^{2}\right) \\
& V_{2}^{-}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot V_{2}^{+}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-} \quad V_{2}^{-}=\frac{S_{21} \cdot V_{1}^{+}}{1-S_{22} \cdot \Gamma_{L}} \\
& P_{L}=\frac{\left|V_{1}^{+}\right|^{2}}{2 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \quad P_{L}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}
\end{aligned}
$$

Signal power

Signal power

$$
\begin{aligned}
& P_{\text {in }}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}\left(1-\left|\Gamma_{i n}\right|^{2}\right) \\
& P_{L}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}
\end{aligned}
$$

- Power available from the source

$$
P_{a v S}=\left.P_{i n}\right|_{\Gamma_{i n}=\Gamma_{S}^{*}}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left(1-\left|\Gamma_{S}\right|^{2}\right)}
$$

- Power available on the load (from the network)

$$
P_{a v L}=\left.P_{L}\right|_{\Gamma_{L}=\Gamma_{\text {out }}^{*}}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left|1-\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {out }}\right|^{2}\right)}
$$

Two-Port Power Gains

- Power Gain

$$
G=\frac{P_{L}}{P_{i n}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left(1-\left|\Gamma_{i n}\right|^{2}\right) \cdot\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \quad \begin{array}{ll}
\text { in } & =P_{i n}\left(\Gamma_{S}, \Gamma_{i n}\left(\Gamma_{L}\right), S\right) \\
P_{L}=P_{L}\left(\Gamma_{S}, \Gamma_{i n}\left(\Gamma_{L}\right), S\right)
\end{array}
$$

- The actual power gain introduced by the amplifier is less important because a higher gain may be accompanied by a decrease in input power (power actually drained from the source)
- We prefer to characterize the amplifier effect looking to the power actually delivered to the load in relation to the power available from the source (which is a constant)

Two-Port Power Gains

- Available power gain

$$
G_{A}=\frac{P_{a v L}}{P_{\text {av } S}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {out }}\right|^{2}\right)}
$$

Transducer power gain

$$
G_{T}=\frac{P_{L}}{P_{a v} S}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right) \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2} \cdot\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
\Gamma_{i n}=\Gamma_{i n}\left(\Gamma_{L}\right)
$$

- Unilateral transducer power gain

$$
G_{T U}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
S_{12} \cong 0 \quad \Gamma_{i n}=S_{11}
$$

Input and output can be treated independently

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Microwave Amplifiers
Stability

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Stability

$$
\begin{array}{ccc}
\text { L7 } & \Gamma=\Gamma_{r}+j \cdot \Gamma_{i} & r_{L}=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}} \\
Z_{\text {in }} & \Gamma_{i n}=\Gamma_{r}+j \cdot \Gamma_{i} &
\end{array}
$$

- instability

$$
\operatorname{Re}\left\{Z_{i n}\right\}<0 \Leftrightarrow 1-\Gamma_{r}^{2}-\Gamma_{i}^{2}<0 \quad \Gamma_{r}^{2}+\Gamma_{i}^{2}>1 \quad\left|\Gamma_{i n}\right|>1
$$

- stability, $\mathrm{Z}_{\text {in }}$
- conditions to be met by Γ_{L} to achieve (input) stability

$$
\begin{gathered}
\left|\Gamma_{i n}\right|<1 \\
=\text { similarly } \mathrm{Z}_{\text {out }}
\end{gathered}\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

- conditions to be met by Γ_{S} to achieve (output) stability

Stability

$$
\left|\Gamma_{i n}\right|<1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

- We can calculate conditions to be met by Γ_{L} to achieve stability

$$
\left|\Gamma_{\text {out }}\right|<1 \quad\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{s}}\right|<1
$$

- We can calculate conditions to be met by Γ_{S} to achieve stability

Stability

$$
\left|\Gamma_{i n}\right|<1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

The limit between stability/instability

$$
\begin{gathered}
\left|\Gamma_{\text {in }}\right|=1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|=1 \\
\left|S_{11} \cdot\left(1-S_{22} \cdot \Gamma_{L}\right)+S_{12} \cdot S_{21} \cdot \Gamma_{L}\right|=\left|1-S_{22} \cdot \Gamma_{L}\right|
\end{gathered}
$$

- determinant of the S matrix $\Delta=S_{11} \cdot S_{22}-S_{12} \cdot S_{21}$

$$
\begin{aligned}
& \left|S_{11}-\Delta \cdot \Gamma_{L}\right|=\left|1-S_{22} \cdot \Gamma_{L}\right| \\
& \left|S_{11}-\Delta \cdot \Gamma_{L}\right|^{2}=\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}
\end{aligned}
$$

Stability

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|S_{11}-\Delta \cdot \Gamma_{L}\right|^{2}=\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \\
a \cdot a^{*}=|a| \cdot e^{j \theta} \cdot|a| \cdot e^{-j \theta}=|a|^{2} \\
|a+b|^{2}=(a+b) \cdot(a+b)^{*}=(a+b) \cdot\left(a^{*}+b^{*}\right)=|a|^{2}+|b|^{2}+\underline{a^{*} \cdot b+a \cdot b^{*}} \\
\left|S_{11}\right|^{2}+|\Delta|^{2} \cdot\left|\Gamma_{L}\right|^{2}-\left(\Delta \cdot \Gamma_{L} \cdot S_{11}^{*}+\Delta^{*} \cdot \Gamma_{L}^{*} \cdot S_{11}\right)=1+\left|S_{22}\right|^{2} \cdot\left|\Gamma_{L}\right|^{2}-\left(S_{22}^{*} \cdot \Gamma_{L}^{*}+S_{22} \cdot \Gamma_{L}\right) \\
\left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right) \cdot \Gamma_{L} \cdot \Gamma_{L}^{*}-\left(S_{22}-\Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L}-\left(S_{22}^{*}-\Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}=\left|S_{11}\right|^{2}-1 \\
\Gamma_{L} \cdot \Gamma_{L}^{*}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L}+\left(S_{22}^{*}-\Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}=\frac{\left|S_{11}\right|^{2}-1}{\left|S_{22}\right|^{2}-|\Delta|^{2}} \quad+\frac{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right)^{2}} \\
\left|\Gamma_{L}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|^{2}=\frac{\left|S_{11}\right|^{2}-1}{\left|S_{22}\right|^{2}-|\Delta|^{2}}+\frac{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right)^{2}}
\end{array}\right.
\end{aligned}
$$

Stability

Output stability circle (CSOUT)

$$
\left|\Gamma_{L}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|=\left\lvert\, \frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2}-|\Delta|^{2} \mid}\right.
$$

$$
\left|\Gamma_{L}-C_{L}\right|=R_{L}
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{L} for the limit between stability and instability ($\left|\Gamma_{\text {in }}\right|=1$)
- This circle is the output stability circle ($\Gamma_{\llcorner }$)

$$
C_{L}=\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}} \quad R_{L}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2}-|\Delta|^{2}\right|}
$$

Input stability circle (CSIN)

- Similarly

$$
\left|\Gamma_{\text {out }}\right|=1
$$

$$
\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}\right|=1
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{S} for the limit between stability and instability ($\left|\Gamma_{\text {out }}\right|=1$)
- This circle is the input stability circle $\left(\Gamma_{S}\right)$

$$
C_{S}=\frac{\left(S_{11}-\Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2}-|\Delta|^{2}} \quad R_{S}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2}-|\Delta|^{2}\right|}
$$

Output stability circle (CSOUT)

- The output stability circle represents the locus of Γ_{L} for the limit between stability and instability $\left(\left|\Gamma_{\text {in }}\right|=1\right)$
- The circle divides the complex planes in two areas, the inside and the outside of the circle
- The two areas will represent the locus of Γ_{L} for stability $\left(\left|\Gamma_{\text {in }}\right|<1\right) /$ instability $\left(\left|\Gamma_{\text {in }}\right|>1\right)$

Output stability circle (CSOUT)

- Two cases possible: (a) stable outside/ (b) stable inside

Output stability circle (CSOUT)

- Identification of the stability / instability regions
- The center of the Smith Chart in Γ_{L} complex plane corresponds to $\Gamma_{L}=0$
- Input reflection coefficient

$$
\Gamma_{i n}=S_{11}+\left.\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} \quad \Gamma_{i n}\right|_{\Gamma_{L}=0}=S_{11} \quad\left|\Gamma_{i n}\right|_{\Gamma_{L}=0}=\left|S_{11}\right|
$$

- A decision can be made based on $\left|S_{11}\right|$ value and on the position of the center of the Smith chart (origin of the complex plane) relative to the circle

Identification of the stability / instability regions

- Output stability circle
- $\left|\mathrm{S}_{11}\right|<1 \rightarrow$ the center of the Smith chart on which Γ_{L} is represented is a stable point, so it's placed in the stability region (most often situation)
- $\left|S_{11}\right|>1 \rightarrow$ the center of the Smith chart on which Γ_{L} is represented is a unstable point, so it's placed in the instability region
- Input stability circle
- $|S 22|<1 \rightarrow$ the center of the Smith chart on which Γ_{S} is represented is a stable point, so it's placed in the stability region (most often situation)
- $\left|S_{22}\right|>1 \rightarrow$ the center of the Smith chart on which Γ_{S} is represented is a unstable point, so it's placed in the instability region

Example

ATF-34143 at Vds=3V Id=20mA.

@ 5 GHz

- S $11=0.64 \angle 139^{\circ}$
- S $12=0.119 \angle-21^{\circ}$
- S21 = $3.165 \angle 16^{\circ}$
- $\mathrm{S} 22=0.22 \angle 146^{\circ}$
$S_{11}=0.64 \angle 139^{\circ}$
$\left\{S_{11}=0.64 \cdot \cos 139^{\circ}+j \cdot 0.64 \cdot \sin 139^{\circ}\right.$
$S_{11}=-0.4830+j \cdot 0.4199$

```
!ATF-34143
!S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
```

\# ghz s mar 50
$\begin{array}{lllllllllllllll}2.0 & 0.75 & -126 & 6.306 & 90 & 0.088 & 23 & 0.26 & -120\end{array}$ $2.50 .72-1455.438750 .095150 .25$-140 $3.0 \quad 0.69-1624.762 \quad 620.10270 .23-156$ $\begin{array}{llllllllllll}4.0 & 0.65 & 166 & 3.806 & 38 & 0.111 & -8 & 0.22 & 174\end{array}$
$\begin{array}{lllllllllll}5.0 & 0.64 & 139 & 3.165 & 16 & 0.119 & -21 & 0.22 & 146\end{array}$
$\begin{array}{llllllllll}6.0 & 0.65 & 114 & 2.706 & -5 & 0.125 & -35 & 0.23 & 118\end{array}$
$\begin{array}{llllllllllllllllllll}7.0 & 0.66 & 89 & 2.326 & -27 & 0.129 & -49 & 0.25 & 91\end{array}$
$8.00 .6967 \quad 2.017-470.133-620.2967$

!FREQ Fopt GAMMA OPT RN/Zo
$!G H Z$ dB MAG ANG
$\begin{array}{lllll}2.0 & 0.19 & 0.71 & 66 & 0.09\end{array}$
$\begin{array}{llllll}2.5 & 0.23 & 0.65 & 83 & 0.07\end{array}$
$\begin{array}{llllll}3.0 & 0.29 & 0.59 & 102 & 0.06\end{array}$
$4.0 \quad 0.42 \quad 0.51 \quad 1380.03$
$\begin{array}{llllll}5.0 & 0.54 & 0.45 & 174 & 0.03\end{array}$
$\begin{array}{llllllll}6.0 & 0.67 & 0.42 & -151 & 0.05\end{array}$

$\begin{array}{llllll}8.0 & 0.92 & 0.45 & -88 & 0.18\end{array}$
$\begin{array}{lllllllllllll}9.0 & 1.04 & 0.51 & -63 & 0.30\end{array}$
$10.0-1.16-0.61-43-0.46$

Example

- ATF-34143
- at
- Vds=3V
- Id=20mA.

freq $(500.0 \mathrm{MHz}$ to 18.00 GHz$)$

Solution + region identification

- S parameters
- S11 = -0.483+0.42•j
- S12 = 0.111-0.043.j
- $\mathrm{S} 21=3.042+0.872 \cdot \mathrm{j}$

$$
\left|C_{L}\right|=4.032
$$

- S22 = -0.182+0.123.j
- |S11|=0.64<1
- $\left|C_{L}\right|<R_{L}, o \in C S O U T$

$$
C_{L}=\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}=3.931-0.897 \cdot j
$$

The center of the Smith chart is placed inside the output stability circle ($o \in$ CSOUT) and is a stable point (| $\mathrm{S}_{11} \mid<1$)

- the inside of the output stability circle - stability region
- the outside of the output stability circle - instability region

Solution + region identification

- S parameters
- S11 = -0.483+0.42•j
- S12 = 0.111-0.043.j
- $\mathrm{S} 21=3.042+0.872 \cdot \mathrm{j}$
- S22 = -0.182+0.123•j
- |S22|=0.22<1
$\left|C_{S}\right|>R_{S}, 0 \notin C S I N$
- The center of the Smith chart is placed outside
the input stability circle (o \neq CSIN $)$ and is a stable

The center of the Smith chart is placed outside
the input stability circle ($0 \notin$ CSIN $)$ and is a stable point ($\left|S_{22}\right|<1$)

- the outside of the input stability circle - stability region
- the inside of the input stability circle - instability region

$$
\begin{aligned}
& C_{S}=\frac{\left(S_{11}-\Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2}-|\Delta|^{2}}=-1.871-1.265 \cdot j \\
& \left|C_{S}\right|=2.259 \\
& R_{S}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2}-|\Delta|^{2}\right|}=1.325
\end{aligned}
$$

ADS

3D representation of $\left|\Gamma_{\text {in }}\right| \iota\left|\Gamma_{\text {out }}\right|$

- High variations -> we change to z logarithmic scale $\underset{\Gamma_{\text {in }}\left(\Gamma_{\mathrm{L}}\right)}{\Gamma_{i n}\left(\Gamma_{L}\right)=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}, ~()^{2}}$

$$
\underset{\substack{\Gamma_{\text {out }} \\ \Gamma_{\text {out }}\left(\Gamma_{S}\right)}}{ }\left(\Gamma_{S}\right)=S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}
$$

3D representation of $\left|\Gamma_{\text {in }}\right|,\left|\Gamma_{\text {out }}\right|$

$=\log _{10}\left|\Gamma_{i n}\right| \log _{10}\left|\Gamma_{\text {out }}\right|$

$$
\log \left(\Gamma_{\mathbf{i n}}\left(\Gamma_{\mathrm{L}}\right)\right)
$$

$\operatorname{Im} \Gamma_{L}$

$\operatorname{Re} \Gamma_{L}$
$\log \left(\Gamma_{\text {out }}\left(\Gamma_{\mathbf{S}}\right)\right)$

3D representation of $\left|\Gamma_{\text {in }}\right| \iota\left|\Gamma_{\text {out }}\right| \iota|\Gamma|=1$

- $|\Gamma|=1 \rightarrow \log _{10}|\Gamma|=0$, the intersection with the plane $z=0$ is a circle
$\log \left(\Gamma_{i n}\left(\Gamma_{L}\right)\right)$
$\log \left(\Gamma_{\text {out }}\left(\Gamma_{\mathbf{S}}\right)\right)$

Contour map/lines

Contour lines of $\log _{10}\left|\Gamma_{\text {in }}\right|$

Contour lines of $\log _{10}\left|\Gamma_{\text {out }}\right|$

CSIN, CSOUT

Several possible positioning

Several possible positioning

(Quite) Rare positioning

Stability

- Unconditional stability: the circuit is unconditionally stable if $\left|\Gamma_{\text {in }}\right|<1$ and $\left|\Gamma_{\text {out }}\right|<1$ for any passive impedance of the load/source
- Conditional stability: the circuit is conditionally stable if $\left|\Gamma_{\text {in }}\right|<1$ and $\left|\Gamma_{\text {out }}\right|<1$ only for some passive impedance of the load/source
" passive impedance of the load/source <-> interior of the Smith Chart (radius 1 circle in the complex plane)

Unconditional stability

- The two-port is unconditionally stable if either:
- The stability circle is disjoint with the Smith Chart (exterior to the Chart) and the stable region is outside the circle
- The stability circle encloses the entire Smith Chart and the stable region is inside the circle
- One mandatory condition for unconditional stability is $\left|S_{11}\right|<1$ (CSOUT) or $\left|S_{22}\right|<1$ (CSIN) if in at least one point the two-port is not stable then it cannot be unconditionally stable
- Mathematically:

$$
\left\{\begin{array} { l }
{ | | C _ { L } | - R _ { L } | > 1 } \\
{ | S _ { 1 1 } | < 1 }
\end{array} \quad \left\{\begin{array}{l}
\left|\left|C_{S}\right|-R_{S}\right|>1 \\
\left|S_{22}\right|<1
\end{array}\right.\right.
$$

Tests for Unconditional Stability

- Useful for wide frequency range analysis
- It is not enough to check the stability only at the operating frequencies
- we must obtain stable operation for chosen Γ_{L} and $\Gamma_{\text {S }}$ at any frequency

Circles in wide frequency range

Rollet's condition

$$
K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2 \cdot\left|S_{12} \cdot S_{21}\right|}
$$

$$
\Delta=S_{11} \cdot S_{22}-S_{12} \cdot S_{21}
$$

- The two-port is unconditionally stable if:
- two conditions are simultaneously satisfied:
- $\mathrm{K}>1$
- $|\Delta|<1$
- together with the implicit conditions:
- $\left|S_{11}\right|<1$
- $\left|S_{22}\right|<1$
$K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2 \cdot\left|S_{12} \cdot S_{21}\right|}>1$
$|\Delta|=\left|S_{11} \cdot S_{22}-S_{12} \cdot S_{21}\right|<1$

μ Criterion

- Rollet's condition cannot be used to compare the relative stability of two or more devices because it involves constraints on two separate parameters, K and Δ

$$
\mu=\frac{1-\left|S_{11}\right|^{2}}{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|+\left|S_{12} \cdot S_{21}\right|}>1
$$

- The two-port is unconditionally stable if:
" $\mu>1$
- together with the implicit conditions:
- $\left|\mathrm{S}_{11}\right|<1$
- $\left|S_{22}\right|<1$
- In addition, it can be said that larger values of μ imply greater stability
" μ is the distance from the center of the Smith Chart to the closest output stability circle

μ^{\prime} Criterion

- Dual parameter to μ, determined in relation to the input stability circles

$$
\mu^{\prime}=\frac{1-\left|S_{22}\right|^{2}}{\left|S_{11}-\Delta \cdot S_{22}^{*}\right|+\left|S_{12} \cdot S_{21}\right|}>1
$$

- The two-port is unconditionally stable if:
- $\mu^{\prime}>1$
- together with the implicit conditions:
- $\left|S_{11}\right|<1$
- $|S 22|<1$
- In addition, it can be said that larger values of μ^{\prime} imply greater stability
" μ^{\prime} is the distance from the center of the Smith Chart to the closest input stability circle

Rollet's condition

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

μ Criterion

- ATF-34143 at Vds=3V Id=20mA.
- @o. $5 \div 18 \mathrm{GHz}$

Unconditionally Stable

μ^{\prime} Criterion

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

Unconditionally
Stable

Stability

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$
- unconditionally stable for $f>6.31 \mathrm{GHz}$

Stabilization of two-port

- Unconditional stability in a wide frequency range has some important advantages
- Ex: We can use ATF 34143 to design a (conditionally) stable amplifier at 5 GHz , but this design is useless if the amplifier oscillates at $500 \mathrm{MHz}(\mu \approx 0.1)$
- The minimal requirement when working with conditionally stable devices is to check stability at several frequencies over the operating bandwidth and outside the bandwidth
- Unconditional stability can be forced by inserting series/shunt resistors at two-port's input/output (with loss of gain!)

Input series resistor

ADS, Rs $=2 \Omega$

Input series resistor

- Rs $=2 \Omega$
- $\mathrm{K}=1.008, \mathrm{MAG}=13.694 \mathrm{~dB}$ @ 5 GHz
" no stabilization, $\mathrm{K}=0.886, \mathrm{MAG}=14.248 \mathrm{~dB}$ @ 5 GHz

Input shunt resistor

ADS, Rp $=90 \Omega$

Input shunt resistor

- $R p=90 \Omega$
- $\mathrm{K}=1.013, \mathrm{MAG}=13.561 \mathrm{~dB}$ @ 5 GHz
- no stabilization, $\mathrm{K}=0.886, \mathrm{MAG}=14.248 \mathrm{~dB}$ @ 5 GHz

Output series/shunt resistor

- The procedure can be applied similarly at the output (finding g/r circles tangent to CSOUT)
- From previous examples, resistive loading at the input has a positive effect over output stability and vice versa (resistive loading at the output, effect over input stability)

Stabilization of two-port

- Negative effect over the power gain
" we must check MAG/MSG while designing resistive loading
- Negative effect over the noise (debated next)
- We can choose one of the 4 possibilities or a combination which offers better results (depending on transistor, application etc.)
- We can use frequency selective loading
- Ex: RL, RC circuits which sacrifice performance only when needed to improve stability and have no effect at frequencies where the device is already stable
- It might be possible (and should be checked) that stability is improved as an effect of parasitic elements of biasing circuits (bypass capacitors and RF chokes)

Stabilization of two-port

Stabilization of two-port

freq, GHz

Stabilization of two-port

Stabilization of two-port

Stabilization of two-port

Stabilization of two-port

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

